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The Lorentz reciprocal theorem is generalized and applied to the study of the quasi- 
steady motion of a concentric spherical (CS) compound drop at zero Reynolds 
number. Using this result, the migration velocities of a force-free CS compound drop 
placed in a general ambient Stokes flow, as well as the forces on each drop when 
subjected to specified migration velocities, are calculated. The latter constitutes a 
generalization of FaxCn’s law to the case of a CS compound drop. Also some earlier 
results on the thermocapillary migration of such drops (Borhan et al. 1992) are 
rederived more simply and in greater generality. 

1. Introduction 
In this paper, we develop the Lorentz reciprocal theorem for a compound drop 

consisting of a spherical liquid drop placed in an unbounded fluid phase and containing 
a smaller droplet or gas bubble. We restrict our investigation to the low-Reynolds- 
number regime, with surface tension forces dominating the viscous forces as far as the 
deformations are concerned. The inner droplet is concentric with the outer drop, and 
all phases are immiscible with one another. 

There has been renewed interest in the fluid dynamics of compound drops, after a 
relatively extended period of inactivity which followed the original experimental 
studies of Chambers & Kopac (1937) and Kopac & Chambers (1937). The recent 
interest is mostly due to the development of new applications of compound drops in 
a variety of processes such as artificial blood oxygenation (Li & Asher 1973), 
hydrocarbon separation (Li 1971), and prolongation of drug release (Brodin, 
Kavaliunas & Frank 1978). Whereas experimental studies on compound drops date 
back to Chambers & Kopac (1937), theoretical investigations of their motion are quite 
recent, as summarized in the review article by Johnson & Sadhal (1985). Most of the 
earlier analyses are concerned with the motion of these drops under gravity, with little 
or no inertial effects (Brunn & Roden 1985; Sadha]& Oguz 1985). Rushton & Davies 
(1983) examined the settling of encapsulated drops; Stone & Leal (1990) examined the 
behaviour of a compound drop in a general linear flow, with particular emphasis on 
the mechanisms leading to their breakup. More recently, prompted by the growing 
prospects for material processing in space, the thermocapillary motion of these drops 
has been studied (Shankar & Subramanian 1983; Morton, Subramanian & 
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Balasubramanian 1990; Borhan, Haj-Hariri & Nadim 1992). The motion in these 
problems, wherein gravitational effects are absent, is driven by the imposition of a 
constant temperature gradient on the bulk fluid, which induces interfacial tension 
gradients on the drop and the droplet interfaces. These variations in interfacial tension 
result in surface velocities which, in turn, give rise to velocities in the bulk phases 
through viscous forces, leading to an eventual migration of the compound drop. 

As was shown by Sadhal & Oguz (1985) for the motion of a compound drop under 
the action of gravity, the relative motion of the inner droplet with respect to the drop 
is very small for a wide range of densities and viscosities. This provides some 
justification for examining concentric geometries of the compound drop here, as well 
as in the previous studies by Shankar & Subramanian (1983), Morton et al. (1990), and 
Borhan et al. (1992). The primary result of most analytical investigations of the 
behaviour of compound drops has been the prediction of integral quantities such as the 
migration velocities or drag forces. However, details of the flow field have invariably 
had to be determined in order to calculate the desired integral quantities. 

For problems with negligible advection of momentum and energy, the governing 
equations are linear and exactly solvable for the spherical geometries addressed in this 
work. However, through a generalization of the Lorentz reciprocal theorem, one can 
develop expressions for the desired integral quantities without the need to solve for the 
details of the flow. Details of derivation are presented in 52. Using these results, the 
migration velocities of a force-free concentric spherical (CS) compound drop, as well 
as the forces on the drop and the droplet moving with prescribed velocities in an 
arbitrary ambient Stokes flow, are calculated in 9 3. The latter result constitutes Faxen’s 
law for a CS compound drop. Furthermore, as an example of the simplicity and 
generality of the recriprocal arguments presented here, some results on the 
thermocapillary migration of CS compound drops in the presence of surfactants 
(originally derived in Borhan et al. 1992) are rederived in 93. The derivations are much 
simplified and of greater generality. A brief discussion of the results follows in 94. 

2. Recriprocal theorem 
For low-Reynolds-number flows, there exists a reciprocal theorem due to Lorentz 

(cf. Happel & Brenner 1983) which often permits the calculation of gross quantities 
such as the net force on a drop or its force-free migration velocity, without actually 
solving for the flow field. In this section, we derive the relevant form of this reciprocal 
theorem for the case of a CS compound drop. Recent applications of this theorem to 
single-drop cases can be found in Rallison (1978), Leal (1980), and Haj-Hariri, Nadim 
& Borhan (1990). 

Reciprocity principles are important tools in a number of other fields such as 
acoustics, electromagnetism, dynamics, and statics. The underlying requirement for the 
applicability of such principles is the existence of a self-adjoint mobility or admittance 
linear operator (matrix or differential). This condition is satisfied for the simple wave 
equation in acoustics (Pierce 198 1) and electromagnetism, and for coupled oscillators 
with or without Rayleigh dissipation (Rayleigh 1873) including the static case of zero 
frequency. In acoustical applications one may interchange the locations of the source 
and receiver and still measure the same field, or one related to it, if the polarity of the 
source is altered along with its location. The applications in dynamics, statics, and 
electromagnetism are of the same nature. 

For the case of Stokes flow, the reciprocity principle is obtained by considering two 
distinct sets of forces and velocities corresponding to the solution of two geometrically 
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FIGURE 1. A concentric spherical (CS) compound drop. 

identical problems (same geometry and governing equations, different boundary or 
forcing conditions). An alternative interpretation of this principle is one of conservation 
of a ‘virtual energy’ which for steady problems reduces to one of the balance of a 
‘virtual power flow’. The term ‘virtual’ is used to denote the formal nature of the 
entity: it is composed of forces from one experiment (solution) and velocities from 
another. In the case where both sets of data (solutions) correspond to the same 
experiment, this balance holds trivially. This notion of virtual power and the balance 
of its flux through the boundaries provides an alternative interpretation of the 
mathematical derivations which follow. 

The problem of a CS compound drop translating in a quiescent fluid is now treated. 
Consider the following Stokes flow problem defined in the spherical geometry depicted 
in figure 1, with Bi and xj denoting the volume occupied by phase i and the interface 
between phases i and j ,  respectively: 

V2vi = Vpi ,  V . v i  = 0 for rEBi, (2.1 a, 6 )  

subject to the boundary conditions 

and 

( ~ , , p J + ( -  U,const.), reYm, (2.2) 

(2.3 a) 

(2.3 b) 

(2.3 c) 
emu3 = B,,(e)+&,,e.(V- v), 

vi - v, = Ai3(e), 

e. (II, - hi II,) - (I- ee) = C,,(e) 

( i  = 1,2). The surface .u7, consists of a sphere at infinity, concentric with the surfaces 
q3 and g,. In these expressions, ui and pi denote the velocity and pressure fields in the 
three regions of a compound drop of outer radius unity and inner radius /3 < 1. By 
taking the above fields to be the disturbance quantities, the fluid far from the drop 
appears to be quiescent. However, the origin of the reference frame is fixed to the drop 
centre and translates with its unknown velocity U (cf. (2.2)). The inner droplet 
translates with the unknown velocity V which can be different from U. The ‘forcing’ 
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functions Ai3,  Bi3, and Ci3, appearing in the boundary conditions at the interfaces, q3, 
are arbitrary functions of position on those surfaces, as represented by their 
dependence on e,  the unit vector in the radial direction - itself a function of the angular 
variables on the surface of a unit sphere. These forcing terms arise, for instance, when 
the problem is formulated for the disturbance fields, or when one seeks the leading 
correction to the flow for small perturbations away from the spherical geometry. The 
stress tensors I I i  have the usual Newtonian definitions (e.g. I I i  = --pi /+ (Vv, + Vu:)], 
and hi denotes the ratio of the viscosity of phase i to that of the intermediate phase, 
referred to as phase 3.  The Newtonian nature of II, brings about the self-adjointness 
needed for the existence of a reciprocal principle. The notation and the don- 
dimensionalizations used in this paper are standard and conform to those of Haj- 
Hariri et al. (1990) and Nadim, Haj-Hariri & Borhan (1990). The pressure and stress 
in each phase are non-dimensionalized using the viscosity of that phase, so as to render 
(2.1) into the simplest form. For this derivation it is temporarily assumed that the drop 
and the droplet are force-free, namely 

e.II,dS = 0, [%3e.II,dS = 0. s Y:,  
(2.4) 

However, this assumption will be relaxed in obtaining FaxCn's law. Boundary 
conditions (2.3) result from the continuity of velocity, the kinematic condition, and the 
tangential stress balance at the interfaces. The normal stress balance cannot be 
imposed because of the prespecification of the drop shapes ; this condition can be used 
later to determine the corrections to the shapes by perturbation (e.g. Haj-Hariri et al. 
1990). Given the forcing functions Ai3, Bi3 and Ci3, the drop and the droplet achieve 
migration velocities U and V,  respectively, so as to satisfy (2.4). 

As mentioned in Nadim et al. (1990), to derive the reciprocal theorem for the case 
of a single drop, one needs the flow field of a test problem, namely, that for uniform 
flow past a stationary drop. This known flow field, in conjunction with the boundary 
conditions for the problem of interest, leads to a simple expression for the migration 
velocity. In the present case there are two migration velocities that must be evaluated. 
Consequently, we will need the flow fields for two test problems; specifically, one 
corresponding to a CS compound drop in a quiescent fluid with the outer drop fixed 
and the inner droplet moving at U*,  and the other to a uniform flow, U*,  past a 
completely stationary CS compound drop. These test problems constitute two linearly 
independent solutions of the Stokes equations. Alternatively, the two problems are 
needed in order to uniquely determine the distribution of the power sinks on the two 
interfaces. Let us denote the velocity, pressure, and stress fields for the test problems 
by the symbols u, q and 0.  Superscript l(1 = 1,2) is used to distinguish the two test 
problems. The governing equations for these two problems are written with the aid of 
the Kronecker-delta, with the hi the same as those for the main problem: 

V'u; = vqi, V . u j  = 0 for rEaii ,  (2.5a, b) 

subject to the boundary conditions 

(ug, 4:) + (- 6,, U*,  const.), r E Ym, 

r E q3, I and u; - uf = 0, 

e - u ;  = SilSLle.U*, 

e . (Qh-h iQ: ) . ( / - ee )  = 0, 

(2.6) 

(2.7a) 

(2.7 b) 

( 2 . 7 ~ )  



Reciprocal theorem for  compound drops in Stokes f low 269 

where, for economy of notation, the constant velocity vector is denoted by the same 
symbol U* in the two cases. Therefore, I = 1 corresponds to a stationary drop and a 
moving interior droplet with quiescent fluid at infinity, and I = 2 to a stationary CS 
compound drop with uniform flow at infinity, a problem solved by Rushton & Davies 
(1983). However, as will be shown in $3, by combining the two test problems in a 
reciprocal principle, the method becomes quite general and can be used to address 
problems that are considerably more involved than either of the test problems. 

The solutions to these problems are written using Lamb's general solution in 
spherical geometries, as outlined in Appendix A. The general form of the solution is 

u; = li"(cf, cf)-6,, U*, q; = 4'(CF),  (2.8 a) 

u2--u( 1 - ̂J. d12 1 ,  dlZ)-S 2 12 U*,  qi = d v ( d : ) ,  (2.8 6 )  

(2.8 c) 

where the superscripts and 4, respectively denote algebraically growing and decaying 
behaviour in the radial coordinate, r. The second superscript on the constants c and d 
in (2.8) designates the fluid phase in the CS compound drop. The functional 
dependencies of li and q on r and e(r = re) are implied but not shown explicitly. Their 
exact forms as well as the values of the constants c and d are presented in Appendix 
A. In the interest of brevity, the superscript I is suppressed hereafter unless i t  is needed 
explicitly. Using the expressions for ui, A, e - Qi, and e . [Q, - A, Q,] e on the surfaces q,, 
given at the end of Appendix A, it follows that the force on the drop is given as usual 
in terms of the stokeslet strength, d r ) ,  as 

U: = f'(ci3,  c:) + l i+(dy,  d:) - S,, U*,  qk = ~'(cF)  + @(dk3), 

In order to derive the reciprocal theorem for the CS compound drop, one starts with 
the low-Reynolds-number identities 

V*(IIi*u:) = V.(Q:*vi), (2.10) 

which hold since ll and 0,  as well as the velocity fields, are solenoidal. Integrating 
(2.10) over gi(i = 1,2,3), with denoting the volume bounded by z, and Y.,, and 
applying the Gauss divergence theorem results in 

e-l12.u2dS- e.n, .u,dS = e.Q,-v2dS- e-Q,.v,dS, (2.11a) s,; 1% s, 1% 
s .%3 i %I s .%, 

e.II,.u,dS- e.n,-u,dS = e.Q,.u,dS- e-Q,-v,dS, (2.1 1 b) 

r P 

(2.11 c) 

In the first term on the left-hand side of (2.11 a), uk can be replaced by its constant value 
at infinity (cf. (2.6)), S,, U*, and taken outside the integral. The remaining integral 
vanishes since the drop in the real problem is assumed to be force-free (cf. (2.1)-(2.3)). 
In $3 the case of non-vanishing force will be considered. Similarly, in the first term on 
the right-hand side of (2.1 1 a), v, is replaced by the constant - U (cf. (2.2)), and since 
V.  Q, = 0 in B3, the remaining integral over Ym is recognized as the force on the CS 
compound drop of test problem I, P;,, as given by (2.9). If both sides of (2.11 a) are 
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multiplied by A, and subtracted from (2.11 b), and those of (2.1 1 c) are multiplied by A, 
and added to the result, it is found (after some simplification) that 

- {e. [Q, - A, Q,] eB,, - A, e.  0,. A,, - C,,.u,} d S  
- i,, 
-13, (e.[Q, - A,  Q,] - eB,, -A ,  e- 0, -Al3  - C,, - (u,--&~] U*)dS. (2.12) 

Using the interfacial conditions (2.3) and the force-free requirements (2.4), the integrals 
on the left-hand side of this equation can be simplified to yield the following system of 
equations for the two unknown migration velocities, U and V :  

A,dr' U + d f ' ( V -  U )  = (2.13) 

where 

x C,, + 6A1 CP'PA,, -- 6df'B,,e,  (2 .14~)  
P2 

and 

K,, = (- C,,+ 6 4  A, , ) -[(3dy)  + d r ) )  ee+ d y )  /I 
+(dr )+S ,J  C , , + 6 ( d ~ ' - h 2 d ~ ) )  B,,e. (2.14b) 

The linearity of the equations in the arbitrary vector U* has been exploited so as to 
eliminate this vector. The solution of the above system (for I =  1,2, which is a 
suppressed superscript on all coefficients) will yield the migration velocities for a wide 
range of problems in which the CS compound drop may deviate from its concentric 
configuration only at a very slow rate. This condition implies a vanishingly small 
relative migration velocity between the drop and the occluded droplet, consistent with 
the existing experimental results (e.g. Sadhal & Oguz 1985). The desired migration 
velocities are obtained without having to solve for the details of the flow field. Only two 
simple test problems needed to be solved in detail. All that is needed for studying new 
problems with the appropriate geometries is to determine the terms Ai3, Bi3, and Ci, 
in the interfacial conditions (2.3) for the problem of interest. It can be shown that the 
constants d r  and d y ,  appearing as the coefficients of our 2 x 2 algebraic system for U 
and V,  yield a non-vanishing Jacobian, thus ensuring uniqueness of the solution. 

3. Results 
3.1. Force-free migration velocities 

The reciprocal argument is now used to determine the migration velocities of a CS 
compound drop placed in an arbitrary ambient Stokes field, V", p", satisfying the 
non-dimensional Stokes and continuity equations everywhere. The total velocity and 
pressure fields in the various phases, in the presence of the drop, are decomposed into 
the ambient field plus a disturbance, as follows: 

vi = V"+v; ,  p i  = p m + p ; .  (3.la, b) 
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The disturbance quantities u; and p; satisfy the non-dimensionalized Stokes and 
continuity equations (cf. (2.1 a, b)), subject to the boundary conditions 

( v ; , P ; ) + - ( - - , o )  as rE%, (3.2) 

and 
(3.3a) 

(3.3b) 

The tangential-stress conditions at the interfaces are given as 

e-[I13-AiIIi]-(/-ee) = 0 on r E q 3 .  (3.4) 

Furthermore, force-free conditions are imposed on the drop and the droplet. Equation 
(3.4) can be written in terms of the disturbance quantities as 

e .  [II; - hi II;] ( /-ee) = (hi - 1) e .  II"-(/-ee), (3.5) 

where II" is the dimensionless ambient stress tensor. These equations conform to the 
general form to which (2.13) applies, yielding the desired migration velocities. Noting 
the form of the right-hand side of (3.5),  it is clear that the isotropic part of II" (i.e. p") 
does not contribute to the final solution. Dropping the primes and performing some 
algebraic manipulations, one arrives at 

87cA2dr U+8nd:(V- U )  = ( l - A , ) ( d ~ - d ~ - S L 2 )  e.[VV"+(VV"O)+] J, 23 

x (I-  ee) dS+ (A,  - l)(cy +4cE,' P2 - 1 )  

e.[V V" + (V V")t]-( / -  ee) dS- 6(d: - A, d:) 
13 

s,, 13 

for 1 = 1,2.  
If the terms involving the ambient velocity are Taylor expanded about the origin, 

upon surface integration only a few terms remain nonzero, because V" is a solution 
of the Stokes equations. Hence (3.6) is simplified to yield the migration velocity of the 
outer drop as 

Eu, 6P5(A, - 1 )  (A, - 1 )  - (3h, + 2) ( 2 4  + 3), (3 .8)  

where subscript ' 0 '  indicates that the corresponding term is evaluated at the drop 
origin. In the single-drop limit, P + O ,  (3.7) reduces to the well-known expression 

v":. 
2(2A, + 3 )  

l i m U =  VF+ 
B 4 

The migration velocity of the interior droplet is in turn given by 

(3.9) 
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Expressions (3.7) and (3.10) are compact representations for the migration velocities 
of a force-free CS compound drop placed in an arbitrary ambient Stokes flow field. 
These expressions are valid so long as I U -  Vl/l UI < 1 so that the concentric geometry 
is preserved. 

3.2. Faxkn's law 
In this subsection, the forces on the drop and the droplet resulting from the prescribed 
motion of a CS compound drop with velocities U and V in a general Stokes flow are 
calculated. The force on each drop is given by 

(3.11) 

When a decomposition similar to that in $3.1 (cf. equation (3.1)) is again used, the part 
of the stress tensor due to the ambient flow will have no contribution to the force 
integrals of (3.1 1) since IIm is solenoidal. Thus the forces can be simply calculated from 
the disturbance parts of the stress tensors. 

The governing equations are the same as those in $ 3.1 above, with the exception that 
U and V are now prescribed rather than being unknown. A derivation very similar to 
that in $2 can be performed for the forces instead of the migration velocities. The 
derivation is modified only by its treatment of the integrals at infinity, where some 
terms that vanished before (in (2.1 1 a)) are now retained. The resulting expressions for 
the forces are 

87t F. = - { ( - A z d F + d ~ 3 ) U - d y V + A , d ~  V:+&[(A,- 1 ) ( 2 d ~ + + ~ ? ~ ~ )  
23 h,Si2+6i, 

+(A,  dF-dF) +p2df  +p3(A, - 1)(~: +4~:  pz - l)] V2 V,"} (3.12) 

for i = 1,2. The above expressions for the forces on the drop and the droplet can 
formally be written as 

F i i 3 = F z ; / 3 U + F z G 3 V + F ~ m V , " + ~ ~ 1 1 1 i V 2 V ~ ,  i =  1,2, (3.13) 

with expressions for the various Fi3 included in Appendix B. To check the validity of 
these expressions, we examine them in the limit as the radius of the interior droplet 
vanishes. It is readily observed that all contributions to the force on interface %3 

vanish, and the components of the force on interface 3, become independent of the 
viscosity of the droplet, A,. It is also found that the component FL3 vanishes altogether. 
If the viscosity of the drop is allowed to approach infinity, so that the drop represents 
a solid sphere, the expression for the force on this infinitely viscous drop becomes 

Fsph = lim Fz3 = 6x{ 1 +$V2} V,", 
8-0, A, ,o 

(3.14) 

which is the well-known FaxCn's law for a solid sphere in an arbitrary Stokes flow (cf. 
Kim & Karrila 1991). Moreover, the force-free migration velocities (cf. $3.1) are 
recovered by selecting U and V in (3.13) so as to nullify the forces on the compound 
drop. 

3.3. Therrnocapillary migration 
In this subsection, the thermocapillary migration velocities of a CS compound drop, 
and corrections thereto in the presence of surface-active impurities are derived using 
the reciprocal theorem. The results are compared with those originally derived in 
Morton et al. (1990) and Borhan et a;. (1992). The equations governing the 
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thermocapillary migration of a CS compound drop in the presence of surfactants are 
presented below. Upon identification of the applicable Ai3, Bi3, and Ci3 (cf. (2.3)), 
expression (2.13) is used to determine the migration velocities U and V .  

The thermocapillary motion of the drop is due to the dependence of surface tension 
on temperature, and is modified by its additional dependence on surfactant 
concentration. The velocity and pressure fields, ui and p i ,  of a CS compound drop 
satisfy the non-dimensional Stokes and continuity equations (2.1) subject to the 
boundary conditions (2.2) and (2.3).  For this case, the functions Ai3, Bi3, and 
Ci3 (i = 1,2), appearing in the interfacial conditions (2.3a-c), are given by 

A,,@) = 0, (3 .1  5 a)  

B,,(e) = 0, (3.1 5 b) 

Ci3(e) = (- l ) ( i + l )  [(ail + yd,,) V, q3 + (dil +ad,,) eV, ri3] - (1- ee), (3.15 c)  

where q3 and ri, represent the temperature and surfactant concentrations, respectively, 
on interfaces .4pi3(i = 1,2).  The symbols a, y, and E are defined by 

(3.16) 

In the above, a is the surface tension and the subscript ‘0’ represents evaluation at the 
reference temperature and surfactant concentration, T, and ro, respectively. 

The reciprocal theorem is used to determine the thermocapillary migration velocities 
of the droplet and the drop in the absence ( E  = 0) as well as in the presence of trace 
amounts of surfactant (0 < E 4 1 ) .  For E = 0, the ‘forcing’ function Ci3 takes the form 

Ci3 = Ci3(/-  ee) G ,  (3.17) 

where G is the constant temperature gradient, and the constants Ci3. are related to the 
surface gradients of the temperature field on q3(i = 1,2) ,  given explicitly in Appendix 
B. Equation (2.13) immediately provides the migration velocities 

V = -  5[3h1V2- 1)-2]  C23 +[6(h2- I ) p 6 -  IO(h2- 1 ) $  + 2(2h2 + 3 ) p ]  CIS 6, 
2EUV 

(3.18 b) 

with E,, given in (3.8),  and G = G/IGI. These results are in complete agreement with 
those of Morton et al. (1990). 

To determine the corrections to the thermocapillary migration velocities of the CS 
compound drop in the presence of bulk-insoluble surfactants, the surfactant 
concentrations ri3 from Borhan et al. (1992) are used. These concentration profiles 
were obtained by solving the surface convective-diffusion equation using the leading- 
order surface velocities which are known for E = 0. The surfactant distribution on the 
interface is given by 

(3.19) 

with the Pi(i = 1,2)  denoting the surface PCclet numbers for surfactant transport (cf. 
Borhan et al. 1992). The O(E) correction fields satisfy equations similar to the ‘clean’ 
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thermocapillary motion above, except that the functions Ci, now result from the 
surface gradient of the surfactant concentrations (3.19). Expressions for Ci3 for this 
problem turn out to be 

(3.20~) 

(3.20 b) 

Carrying out the requisite integrations in (2.13), the O(e) correction to the migration 
velocity of the drop, U, is found to be 

10p4~1[1/q - ~ 0 t h  93 + 2[3(4 - I)$ - (3h, + 2)] [coth % - 1 /93  G, (3.21) u, = - 
3 4 ,  

with a similar expression for V,; one related to (3.18b) in the same way that (3.21) is 
related to (3.18a). The advantage of using the reciprocal theorem for calculating the 
correction to the migration velocity is that it provides an expression valid for all Peclet 
numbers, whereas the original perturbation solution of Borhan et al. (1992) yields the 
correction for small Peclet numbers only. The solution obtained here agrees with the 
perturbation results as 9 tends to zero. 

4. Discussion 
We have applied the Lorentz reciprocal theorem to the case of a concentric spherical 

compound drop in quasi-steady motion. As mentioned in the introduction, this is not 
a contrived example in the sense that the concentric geometry of the compound drops 
has been shown in the literature to be a prevalent one (e.g. Sadhal & Oguz 1985). 
Applications to forced and force-free motions of a CS compound drop in an arbitrary 
ambient Stokes flow were demonstrated. The forced-drop results constitute an 
extension of Faxen’s laws to the case of CS compound drops. Applications to the 
thermocapillary migration of compound drops in the presence and absence of 
surface-active impurities are shown to generalize the results derived earlier by Borhan 
et al. (1992). This generalization was mainly in the form of removing the small surface 
PCclet number restriction. The main advantage of such reciprocal arguments is that 
only one or two test problems, which are usually straightforward, need be solved in 
detail. Once the solutions to the test problems have been obtained, a whole host of 
geometrically compatible problems can be studied and integral quantities such as 
migration velocities or forces can be calculated elegantly and with relative ease. 

H. H.-H. acknowledges partial support through NSF grant CTS-9010733. A. B. was 
partially supported by a grant from the Engineering Foundation. The detailed 
comments of the referees are gratefully acknowledged. 

Appendix A. The two test problems 
As mentioned in the derivation of 92, two ‘linearly independent’ solutions of the 

Stokes equations are necessary for the CS compound drop geometry in order to 
determine the unknown quantities of interest (velocities or forces). The two problems 
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selected in the current investigation correspond to (2.5)-(2.7) and can be solved using 
a vector form of Lamb’s general solution (Hinch 1988). The general expressions for the 
velocity and pressure fields are 

u = V$+rr \V$+V(r .A)-2A,  q = 2V.A ,  (A 1) 
where the fields (s, $, and A are all harmonic, and A is non-solenoidal. Since the 
problem is linear, the above harmonic functions must all be linear in the forcing vector, 
U*. Clearly $ will not contribute since it is a pseudoscalar and cannot be constructed 
from the true vector U*. The solution in the exterior fluid phase, labelled 2 in figure 
1 ,  is constructed using exterior spherical harmonics, whereas inside the inner droplet, 
labelled 1 in figure 1, the interior spherical harmonics are used. In the intermediate 
region, 3, a combination of both types of solution will be needed. The exterior and 
interior forms of solution each involve two scalar constants. Specifically, for the 
exterior solution 

$ = (d l / r2 )e -  U*, $ = 0, A = d2( l / r )  U*, (A 2) 

yielding 3d1 d2 { ( r 3  r )  (4 :)} u = l i J ( d , , d , ) ~  - -+- ee+ --- / .U* 

and q = @(dl,d2) = - (2d2/r2)e-  U*, (A 3b)  

$ = c, re- U*, $ = 0, A = c2 r2[3ee-/l. U * ,  (A 4) 

u = ut(cl, c,) = { - 2c, Pee + (c, + 4c2 r 2 )  /> - U* (A 5 4  
q = @(cl, c2) = 20c2 re. U*.  (A 5b)  

whereas for the interior 

yielding 

and 

The constants used in conjunction with the growing solutions are cis and those with 
the decaying solutions are d?, where i( = 1,2) is a counter for the constants, I( = 1,2) 
denotes the test problem being studied, and s( = 1,2,3) is the fluid phase indicator. 

Satisfaction of the boundary conditions (2.6) and (2.7) yields the following 8 x 8 
algebraic system for the constants c and d:  

(A 6 4  

2 1 2 1 9 (A 66)  

(A 6 4  

(A 6 4  

t 2 ,  2/?2Cf)+CF) = 1, (A 6 e , f )  

(A 6g,  h)  

- 2 c f )  + d(2) + 3d(2) - d(3) - 3dy)  = 0, 

4cr) + cy)  + d(2) - d(2) - d(3) + d(3) = 0 
2 

- 2p2c?’ -+ 2p2cP) - dr’/P- 3d?’/p3 = 0, 

4p2cf) + c y )  -4p2cP) - c r )  - d r ) / P +  dy)//’j3 = 0, 
- 2 d r )  - 2d(2) = 8 

1 

d(3) 
pcf) - A,  pcf) -1 = 0 cf) + A d(2) - d y )  = 0 2 1  

p ” ’  

The solution to this algebraic system of equations can be readily obtained using 
common symbolic algebra software. Some of the constants have rather cumbersome 
representations ; however, it is remarkable that their combinations resulting in physical 
quantities of interest, such as forces or migration velocities, are relatively compact. 

The following expressions are needed for the derivations presented in 52. On g3: 
u, = u3 = u13 = ( 2 4 )  p2ee + (cp) + 4cP) pz - 8.J 4. U*, 

A, e .  0, = A,{ -qol e + 6( - 3cp)pee + cf’pl). U*},  

e - [ Q3 - A ,  a,] e = - (qo3 - A, qol) + 6(d f)/p2) e - U* ; 

(A 7 4  

(A 7 b )  

(A 7 4  
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and on z3: 
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u, = u, = u,, = { - ( 3 d ~ ) + d ~ ) ) e e + ( d ~ ) - d r ) - S , , ) I ) . U * ,  

A, e .  Q, = A,{ - qo2 e + 6[(3d?) + d r ) )  ee- d?) /I - U*}, 
e.[Q,-A, 0 , J . e  = - (qo3 - A, q,,) + 6(@- A, @)) e .  U*. 

(A 8 4  

(A 86) 

(A 8 4  

In (A 7 )  and (A 8 ) ,  qoi(i = 1,2,3) denote the constant part of the pressure in phase i for 
the test problem 1. The above relations turn out to be the only results required in the 
application of the reciprocal theorem to the CS compound drop. 

Appendix B. Definition of various constants 
The forces on the drop and the droplet are given in (3.13) as 

Fi3 = P: U+P: V+P:m V,“+P$,rnV2V,”, i = 1,2, (B 1 )  

where for the dropdroplet interface, q3: 
F: = -[4(Al-l)(A,- 1 )p”+5AlA , /33 - (3A l+2) (3h2+2)~ /2E~) ,  (€3 2a) 

(B 2b) 

(B 2 4  

(B 2 4  

Fh3 = [(3A, - 2) (A, - 1 )  p” - ( M I  + 2)(& + 1 )  pJ /Ey’ ,  

F F m  = -[2A,(hl- 1)v5++4+/33)-A2(3Al+2)v2+/3)]/Ep), 
F$,m = - +Fh3m, 

with 

EF’ = 4(A1 - l)(A,- 1)p6 + (3A, -2)(2-3A,)P5 + 10A1 h,p3 

- ( 3 4  + 2) (3A, + 2) /3 + 4(A1 + 1 )  (A, + l ) ,  (B 2e) 
EP’ = 8(h1-1)(A2- 1)P5+2[(2-5h1)h,+2h,]CB4+/33) 

+ 2[(5A1+ 2) A2 + 2AJ (/3, +/3) + 8(A1+ 1 )  (A, + I ) ,  (B 2 f )  

while on the drop-exterior interface, K 3 :  
F2,3 = -{4(A,- l ) ( A , -  1)P5+(2-5Al)(Az- 1)(P4+p3) 

+[(5A,+2)A2-2] CB2+p)-2(A1+ 1)(2A2+3)}/E:2’, (B 3 4  
(B 3b) 

(B 3 4  

(B 3 4  

FF = [2(A1 - 1 )  V5 + p4 + p3) - (3h1 + 1 )  (p2 + /3)]/EY’, 
F G m  = {2(A1- 1)(2h2-3)$-(h1+2)(h,-3)P3+6(1-hlh2)/32 

+ [(2- A,) A, + 3h1 + 61 /3+ 2(A1+ 1 )  ( 2 4  + 3)} /Eg) ,  
q v m  = -[2(A1- l)/34+(A1-2)/33-~/32-(Al+2)/3-2(A1+ 1)]/2EF’, 

with 

EP’ = 8(h1 - l)(A, - 1 ) $  - 2(A1 + 2) (A, -2) P3 + 4(2 - 3A1 A,)P2 
+ 2(2 - A,)(A, + 2) /3+ 8(A1 + l ) ( h ,  + 2). (B 3 e) 

The expressions below define the Ci3 appearing in $3.3: 

with ET = 2 p 3 ( 1 - K 1 3 ) ( 1 - K 2 3 ) - ( 2 + K 1 3 ) ( 2 K 2 3 +  l ) ,  (B 5 )  
where K~~ is the ratio of the thermal conductivity of phase i to that of phase 3. 
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